STEROL COMPOSITION OF Pyrosoma giganteum

T. N. Makar'eva, B. B. Grebnev, A. S. Dmitrenok, and V. A. Stonik UDC 547.925:549.93

Continuing an investigation of the steroid composition of marine organisms [2], we have studied the steroi fraction of the hemichordate <u>Pyrosoma giganteum</u> (class Thaliacea, subclass <u>Pyrosoma</u>, family Pyrosomidae), collected by means of a Sigsbee trawl in April, 1991 during the 13th cruise of the Scientific Resarch Ship "Akademik Oparin" in the region of the submarine mountain Kito-Kokho in the Philippine Sea from a depth of 326 m.

The free steroid fraction was isolated as described in [2]. Then part of the free steroids was acetylated by acetic anhydride in pyridine (1:1). The resulting mixture of sterol acetates was separated by preparative TLC (hexane-benzene (4:1)) on silica gel impregnated with silver nitrate and was analyzed by GLC-MS using a method analogous to one described previously [2].

The steroid components were identified from the mass spectra of the acetates with consideration of their chromatographic behavior in capillary GLC (phase OV-101, temperature 280°C).

A total of 21 steroid components was isolated from <u>P. giganteum</u>, including 19 known steroids that had been identified previously. The results of the analysis are given in Table 1.

Sterols	Structural features	M+	RRT	%
24-Norcholesta-5,22-dien-3β-ol	C ₂₆ Δ ^{5, 22}	-	0,69	0,89
24-Nor-5a-cholest-22-en-3 8-01 24-Methyl-27-norcholesta-5,22- dien-38-01	$C_{26}\Delta^{22}$ $C_{27}\Delta^{5,22}$	414	0,72 0,89	4,92
24-Mathyl-27-nor-5α-cholest-22- en-3β-ol	C ₂₇ ∆ ²²	42 8	0,91	
Cholesta-5,22-dien-3 β -ol Cholesta-22-en-3 β -ol Cholesterol Cholestanol 24-Methylcholesta-5,22-diel-3 β -ol	$\begin{array}{c} C_{27}\Delta^{5,22} \\ C_{27}\Delta^{22} \\ C_{27}\Delta^{5} \\ C_{27}\Delta^{0} \\ C_{75}\Delta^{0} \\ C_{78}\Delta^{5,22} \end{array}$	428 430	0,92 0,94 1,00 1,02 1,09	9.04 3.75 12.43 10,65 21,16
24-Methylcholest-22-en-38-ol Unidentified C ₂₈ nonsaturated sterol	$\begin{array}{c} C_{28}\Delta^{22} \\ C_{28}\Delta^{X} \end{array}$	442 	1,12	4,53 0,02
24-Methylcholesta-5,24(28)-dien- 3β-ol	C ₂₈ Δ ^{5,24(28)}	-	1,22	6,92
24-Methylcholest-5-en-3β-ol Unidentified C ₂₈ diunsaturaed sterol	C ₂₈ Δ ⁵ C ₂₈ Δ ^{x, y}	-	1,23 1,27	3.10 0,89
24-Methylcholestanol 24-Ethylcholesta-5,22-dien-3β-ol 24-Ethylcholest-22-en-3β-ol 24-Ethylcholest-5-en-3β-ol 24-Ethylcholestanol 24-Ethylcholestanol 24-Ethylcholesta-5,24(28)-dien- 3β-ol	$\begin{array}{c} C_{28}\Delta^{0} \\ C_{29}\Delta^{5,22} \\ C_{29}\Delta^{22} \\ C_{29}\Delta^{5} \\ C_{29}\Delta^{0} \\ C_{29}\Delta^{0} \\ \end{array}$	444 456 458 -	1,29 1,33 1,33 1,49 1,53 1,66	5,18 6.34 6,12 0,46
24-Propylidenecholest-5,14(28)- dien-3β-ol	C ₃₀ Δ ^{5,24(28)}	-	1,74	1,57

TABLE 1. Composition of the Steroid Fraction of <u>Pyrosoma</u> giganteum

Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 589-590, September-October, 1992. Original article submitted November 6, 1991. As can be seen from the table, the sterol fraction of the pyrosoma studied consisted of $C_{26}-C_{30}$ steroid alcohols and was characterized by a high level not only of C_{27} but also of C_{28} compounds. The sterols isolated were stanols and Δ^{5-} , Δ^{22-} , Δ^{5} , 22^{-} , and Δ^{5} , 24(28)-derivatives.

The steroid composition of <u>P. giganteum</u> has not been studied previously. However, the sterol fraction of a related species - <u>Pyrosoma sp.</u>, living in the Atlantic Ocean - has been investigated [3]. The total sterols of <u>O. giganteum</u> and <u>P. sp.</u> proved to be similar. The composition of the total sterols of these free-floating colonial animals probably depends on their systematic position.

LITERATURE CITED

- 1. P. S. Dmitrenok, T. N. Makar'eva, L. K. Shubina, V. B. Krasokhin, and V. A. Stonik, Khim. Prir. Soedin., 461 (1988).
- P. S. Dmitrenok, L. K. Subina, T. N. Makar'eva, and V. A. Stonik, Khim. Prir. Soedin., 303 (1988).
- 3. J. A. Ballantine, A. Lavis, J. C. Roberts, and R. J. Morris, J. Exp. Mar. Biol. Evol., 29 (1977).

A NEW ACETYLATED GLYCOSIDE FROM THE HOLOTHURIAN Cucumaria japonica

O. A. Drozdova, S. S. Avilov, A. I. Kalinovskii, and V. A. Stonik UDC 547.996:593.96

Continuing an investigation of the triterpene glycosides from the holothurian <u>Cucumaria</u> <u>japonica</u> [1], we have established the chemical structure of a new glycoside – cucumarioside A_1-2 (I). Compound (I) is a new holostane glycoside containing an acetylated monosaccharide residue in the carbohydrate chain.

The fraction of weakly polar glycosides containing (I) was obtained by chromatographing the total glycosides on silica gel [1]. It was not susceptible to further separation by the usual methods, but the desulfation of this fraction, followed by separation on silica gel [CHCl₃:CH₃OH (5:1)] and HPLC (Silasorb C-18, 60% C₂H₅OH), led to the isolation of the individual derivative (II), mp 201-203°C, $[\alpha]_{578}$ -96° (c 10; pyridine).

A comparison of the ¹³C NMR spectra of (II) and of the desulfated derivative of cucumarioside A_1 -2 (III) [1] permitted the conclusion that in (II), as compared with (III), an acetate group (170.4 and 20.6 ppm) was attached to the C-6 atom of the terminal glucose residue. In actual fact, in (II) the C-6 signal was shifted from 62.5 to 64.5 ppm and the C-5 signal from 78.1 to 75.1 ppm, which is explained by the acetylation effect [2]. Moreover, the assignment of these signals to the terminal glucose was confirmed by taking a series of

Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 590-591, September-October, 1992. Original article submitted November 12, 1991.